190 research outputs found

    The new biology: beyond the Modern Synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The last third of the 20<sup>th </sup>Century featured an accumulation of research findings that severely challenged the assumptions of the "Modern Synthesis" which provided the foundations for most biological research during that century. The foundations of that "Modernist" biology had thus largely crumbled by the start of the 21<sup>st </sup>Century. This in turn raises the question of foundations for biology in the 21<sup>st </sup>Century.</p> <p>Conclusion</p> <p>Like the physical sciences in the first half of the 20<sup>th </sup>Century, biology at the start of the 21<sup>st </sup>Century is achieving a substantive maturity of theory, experimental tools, and fundamental findings thanks to relatively secure foundations in genomics. Genomics has also forced biologists to connect evolutionary and molecular biology, because these formerly Balkanized disciplines have been brought together as actors on the genomic stage. Biologists are now addressing the evolution of genetic systems using more than the concepts of population biology alone, and the problems of cell biology using more than the tools of biochemistry and molecular biology alone. It is becoming increasingly clear that solutions to such basic problems as aging, sex, development, and genome size potentially involve elements of biological science at every level of organization, from molecule to population. The new biology knits together genomics, bioinformatics, evolutionary genetics, and other such general-purpose tools to supply novel explanations for the paradoxes that undermined Modernist biology.</p> <p>Open Peer Reviewers</p> <p>This article was reviewed by W.F. Doolittle, E.V. Koonin, and J.M. Logsdon. For the full reviews, please go to the Reviewers' Comments section.</p

    The comb jelly opsins and the origins of animal phototransduction

    Get PDF
    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals

    Phylotranscriptomics to Bring the Understudied into the Fold: Monophyletic Ostracoda, Fossil Placement, and Pancrustacean Phylogeny

    Get PDF
    An ambitious, yet fundamental goal for comparative biology is to understand the evolutionary relationships for all of life. However, many important taxonomic groups have remained recalcitrant to inclusion into broader scale studies. Here, we focus on collection of 9 new 454 transcriptome data sets from Ostracoda, an ancient and diverse group with a dense fossil record, which is often undersampled in broader studies. We combine the new transcriptomes with a new morphological matrix (including fossils) and existing expressed sequence tag, mitochondrial genome, nuclear genome, and ribosomal DNA data. Our analyses lead to new insights into ostracod and pancrustacean phylogeny. We obtained support for three epic pancrustacean clades that likely originated in the Cambrian: Oligostraca (Ostracoda, Mystacocarida, Branchiura, and Pentastomida); Multicrustacea (Copepoda, Malacostraca, and Thecostraca); and a clade we refer to as Allotriocarida (Hexapoda, Remipedia, Cephalocarida, and Branchiopoda). Within the Oligostraca clade, our results support the unresolved question of ostracod monophyly. Within Multicrustacea, we find support for Thecostraca plus Copepoda, for which we suggest the name Hexanauplia. Within Allotriocarida, some analyses support the hypothesis that Remipedia is the sister taxon to Hexapoda, but others support Branchiopoda + Cephalocarida as the sister group of hexapods. In multiple different analyses, we see better support for equivocal nodes using slow-evolving genes or when excluding distant outgroups, highlighting the increased importance of conditional data combination in this age of abundant, often anonymous data. However, when we analyze the same set of species and ignore rate of gene evolution, we find higher support when including all data, more in line with a “total evidence” philosophy. By concatenating molecular and morphological data, we place pancrustacean fossils in the phylogeny, which can be used for studies of divergence times in Pancrustacea, Arthropoda, or Metazoa. Our results and new data will allow for attributes of Ostracoda, such as its amazing fossil record and diverse biology, to be leveraged in broader scale comparative studies. Further, we illustrate how adding extensive next-generation sequence data from understudied groups can yield important new phylo- genetic insights into long-standing questions, especially when carefully analyzed in combination with other data

    CoMET: A Mesquite package for comparing models of continuous character evolution on phylogenies

    Get PDF
    Continuously varying traits such as body size or gene expression level evolve during the history of species or gene lineages. To test hypotheses about the evolution of such traits, the maximum likelihood (ML) method is often used. Here we introduce CoMET (Continuous-character Model Evaluation and Testing), which is module for Mesquite that automates likelihood computations for nine different models of trait evolution. Due to its few restrictions on input data, CoMET is applicable to testing a wide range of character evolution hypotheses. The CoMET homepage, which links to freely available software and more detailed usage instructions, is located at http://www.lifesci.ucsb.edu/eemb/labs/oakley/software/comet.htm

    Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae

    Full text link
    The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co‐occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100307/1/ele12182.pd

    Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin

    Get PDF
    Many larval sponges possess pigment ring eyes that apparently mediate phototactic swimming. Yet sponges are not known to possess nervous systems or opsin genes, so the unknown molecular components of sponge phototaxis must differ fundamentally from those in other animals, inspiring questions about how this sensory system functions. Here we present molecular and biochemical data on cryptochrome, a candidate gene for functional involvement in sponge pigment ring eyes. We report that Amphimedon queenslandica, a demosponge, possesses two cryptochrome/photolyase genes, Aq-Cry1 and Aq-Cry2. The mRNA of one gene (Aq-Cry2) is expressed in situ at the pigment ring eye. Additionally, we report that Aq-Cry2 lacks photolyase activity and contains a flavin-based co-factor that is responsive to wavelengths of light that also mediate larval photic behavior. These results suggest that Aq-Cry2 may act in the aneural, opsin-less phototaxic behavior of a sponge

    Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of <it>Daphnia pulex </it>- the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes.</p> <p>Results</p> <p>Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance.</p> <p>Conclusions</p> <p>Overall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types.</p
    corecore